
 

   PHYS 101 – General Physics I Final Exam 

Duration: 120 minutes Sunday, 24 December 2023; 15:00 
 

1. Small children have difficulty catching objects which are moving fast, yet they enjoy playing catch.  So any adult 

playing with a small child tries to throw the ball so that it reaches the child with the smallest possible speed. 

(a) (12 Pts.) Assume that you crouch to the level of the child so that the throwing 

point and catching point are at the same height. What are the x and y components 

of the initial velocity of the ball so that it reaches a child 1 m away with the least 

possible kinetic energy? (Use g = 10 m s2⁄  and ignore air resistance.) 

(b) (13 Pts.) Assume that you are throwing the ball from a point 3 4⁄  m higher 

than the child who is 1 m away horizontally.  What are the x and y components 

of the initial velocity of the ball so that it reaches the child with minimum kinetic 

energy? (Use g = 10 m s2⁄  and ignore air resistance.)  

Solution: 

Kinematical equations describing projectile motion, and the expression for 

kinetic energy are 

𝑥 = 𝑥0 + 𝑣0𝑥𝑡 , 𝑦 = 𝑦0 + 𝑣0𝑦𝑡 −
1

2
g 𝑡2 , 𝐾 =

1

2
𝑚(𝑣0𝑥

2 + 𝑣0𝑦
2 ). 

To minimize the kinetic energy, we need to find the relation between 𝑣0𝑥 and 𝑣0𝑦. 

(a) Taking the origin at the initial position of the ball, we have 

𝑥 = 𝑣0𝑥𝑡 , 𝑦 = 𝑣0𝑦𝑡 − 5 𝑡2. 

The ball is caught by the child at 𝑥 = 1 m and 𝑦 = 0. So  

1 = 𝑣0𝑥𝑡  →    𝑡 =
1

𝑣0𝑥
 , 𝑣0𝑦𝑡 − 5 𝑡2 = 0  →     𝑣0𝑦 =

5

𝑣0𝑥
  →    𝐾 =

1

2
𝑚(𝑣0𝑥

2 + 25 𝑣0𝑥
−2) . 

Since in this case final kinetic energy is equal to initial kinetic energy, its minimum value requires 

𝑑𝐾𝑖

𝑑𝑣0𝑥
= 𝑚(𝑣0𝑥 − 25 𝑣0𝑥

−3) = 0  →    𝑣0𝑥
4 = 25   →     𝑣0𝑥 = √5 m s⁄  , 𝑣0𝑦 =

5

𝑣0𝑥
= √5 . 

(b) With the same choice of the origin, we now have 

𝑥 = 𝑣0𝑥𝑡 , 𝑦 =
3

4
+ 𝑣0𝑦𝑡 − 5 𝑡2. 

Again, the ball is caught by the child at 𝑥 = 1 m and 𝑦 = 0. So 

1 = 𝑣0𝑥𝑡  →    𝑡 =
1

𝑣0𝑥
 ,

3

4
+ 𝑣0𝑦𝑡 − 5 𝑡2 = 0  →     𝑣0𝑦 = −

3

4
𝑣0𝑥 +

5

𝑣0𝑥
 . 

𝐾𝑖 =
1

2
𝑚 (𝑣0𝑥

2 +
9

16
𝑣0𝑥

2 + 25 𝑣0𝑥
−2 −

15

2
) =

1

2
𝑚 (

25

16
𝑣0𝑥

2 + 25 𝑣𝑜𝑥
−2 −

15

2
) . 

Since 𝐾𝑓 = 𝐾𝑖 + 𝑚𝑔ℎ, where 𝑚𝑔ℎ is a constant, we have 

𝑑𝐾𝑓

𝑑𝑣0𝑥
=

𝑑𝐾𝑖

𝑑𝑣0𝑥
= 25 𝑚 (

𝑣0𝑥

16
− 𝑣0𝑥

−3) = 0  →    𝑣0𝑥
4 = 16   →     𝑣0𝑥 = 2 m s⁄  , 𝑣0𝑦 = −

3

2
+

5

2
= 1 m s⁄  . 

  



2. A cylinder of mass 𝑀, radius 𝑅, and rotational inertia 𝐼 = 𝑀𝑅2 2⁄  is placed on an inclined plane whose angle of 

inclination is 𝜃. A string is wound around the cylinder and pulled up with a force �⃗� parallel to the incline. The 

coefficient of friction is large enough to prevent slipping of the cylinder on the inclined plane, and the string does not 

slip on the cylinder. Gravitational acceleration is g. 

(a) (5 Pts.) What is the magnitude 𝐹 of the force needed to keep the cylinder in 

equilibrium? 

(b) (10 Pts.) Find the acceleration if 𝐹 is large enough so that the cylinder 

accelerates up the inclined plane without slipping. 

(c) (10 Pts.) What is the minimum value of the coefficient of static friction for the 

cylinder not to slip when it is moving up under the action of the force �⃗�? 

 

Solution: (a) We need to have the net torque equal to zero for equilibrium. Evaluating 

torques with respect to the point of contact, we have 

2𝑅 𝐹 − 𝑀g𝑅 sin(𝜋 − 𝜃) = 0   →     𝐹 =
1

2
𝑀g sin 𝜃 

 

(b) If the cylinder accelerates up the inclined plane without slipping, we have 𝑎 = 𝑅𝛼, 

where 𝑎 is the linear acceleration of the center, and 𝛼 is the angular acceleration of the 

cylinder about its symmetry axis. Newton’s scond law is written as 

𝑛 − 𝑀g cos 𝜃 = 0 , 𝐹 + 𝑓𝑠 − 𝑀g sin 𝜃 = 𝑀𝑎 , 𝑅𝐹 − 𝑅𝑓𝑠 = 𝐼 𝛼  →    𝐹 − 𝑓𝑠 =
1

2
 𝑀𝑎 . 

𝑎 =
4𝐹

3𝑀
−

2

3
g sin 𝜃 . 

 

(c) Solving the above equations for 𝑓𝑠, we find 

𝑓𝑠 =
1

3
𝐹 +

1

3
𝑀g sin 𝜃 . 

 

Since 𝑓𝑠 ≤ 𝜇 𝑛 and 𝑛 = 𝑀g cos 𝜃, we find 

1

3
𝐹 +

1

3
𝑀g sin 𝜃 ≤ 𝜇𝑀g cos 𝜃    →      𝜇 ≥

𝐹 + 𝑀g sin 𝜃

3𝑀g cos 𝜃
 . 
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3. Two planets are observed to have circular orbits around a far away star. The first planet has mass 𝑚1 and completes 

its orbit of radius 𝑅1 in time 𝑇1.  The second planet’s orbital radius is  𝑅2. The star is much more massive than the 

planets, so the gravitational interaction between the planets can be neglected.  

(a) (7 Pts.) What is the mass of the star in terms of given quantities and universal constants? 

(b) (7 Pts.) What is the orbital period of the second planet? 

(c) (7 Pts.) What is the ratio of the orbital speeds of the two planets in terms of 𝑅2 𝑅1⁄ ?  

(d) (4 Pts.) Can you determine the mass of the second planet with the given information? Why/Why not? 

 

Solution:  

(a) Let 𝑀 denote the mass of the star, and 𝑚1 , 𝑚2 denote masss of the planets. Newton’s second law        𝐹 = 𝑚𝑎 

applied to circular orbits implies 

𝐺𝑀𝑚

𝑟2
= 𝑚

𝑣2

𝑟
   →    𝑣1 = √

𝐺𝑀

𝑅1
 , 𝑣2 = √

𝐺𝑀

𝑅2
 . 

 

Since 

𝑇 =
2𝜋𝑟

𝑣
   →      𝑇1 =

2𝜋𝑅1

𝑣1
= 2𝜋√

𝑅1
3

𝐺𝑀
   →    𝑇1

2 = (
4𝜋2

𝐺𝑀
) 𝑅1

3    →      𝑀 = (
4𝜋2

𝐺
) (

𝑅1
3

𝑇1
2). 

 

(b) Similarly, 

𝑇2
2 = (

4𝜋2

𝐺𝑀
) 𝑅2

3    →     
𝑇1

2

𝑅1
3 =

𝑇2
2

𝑅2
3 = (

4𝜋2

𝐺𝑀
)    →      𝑇2 = 𝑇1 (

𝑅2

𝑅1
)

3 2⁄

 . 

 

 

(c) 

𝑣1

𝑣2
= √

𝑅2

𝑅1
 

 

 

(d) No, we can not. Expressions for the speed and the period are independent of the mass of the planets. So, a planet 

with any mass traces the same orbit. (Equivalence of the gravitational and inertial mass.) 

 

 

 

  



4. A uniform rod of length 𝐿 and mass 𝑀 (𝐼𝐶𝑀 = 𝑀𝐿2 12⁄ ) is at rest on a 

frictionless horizontal surface. One end of the rod is pivoted on a frictionless hinge 

fixed to a wall, while the other end is fixed to a spring with stiffness constant 𝑘. 

The other end of the spring is fixed to a wall. A block of mass 𝑚 sliding across the 

frictionless horizontal surface with speed 𝑣0 perpendicular to the rod makes a 

completely inelastic collision with the rod, sticking to the end of the rod after the 

collision. Assume that the collision is instantaneous, and that the compression of 

the spring from its equilibrium length after the collision is small. (The figure 

illustrates the motion as seen from above.) 

(a) (12 Pts.) What is the maximum compression of the spring? 

(b) (13 Pts.) What is the period of small oscillations of the system? 

Solution: 

 (a) Angular momentum with respect to the pivot is conserved in the collision. This can be used to find the angular 

speed of the rod plus the block immediately after the collision.  

𝐿𝑖 = 𝑚𝑣0𝐿 , 𝐿𝑓 = 𝐼𝜔 , 𝐼 =
1

3
𝑀𝐿2 + 𝑚𝐿2 =

1

3
(𝑀 + 3𝑚)𝐿2    →      𝜔 =

3𝑚𝑣0

(𝑀 + 3𝑚)𝐿
 

 

Following the collision total mechanical energy is conserved. Hence the kinetic energy right after the collision is equal 

to the potential energy stored in the spring when the motion stops at maximum compression 𝑥𝑚. 

1

2
𝐼𝜔2 =

1

2
𝑘𝑥𝑚

2    →     𝑥𝑚
2 =

𝐼

𝑘
𝜔2 =

(𝑀 + 3𝑚)𝐿2

3𝑘
 

9𝑚2𝑣0
2

(𝑀 + 3𝑚)2𝐿2
=

3𝑚2𝑣0
2

𝑘(𝑀 + 3𝑚)
   →      𝑥𝑚 = √

3𝑚2𝑣0
2

𝑘(𝑀 + 3𝑚)
 . 

 

(b) For small compression 𝑥 of the spring, the spring is approximately horizontal, and the restoring torque is 

𝜏 = −𝑘𝑥𝐿 = −𝑘𝐿2 sin 𝜃  , 𝜏 = 𝐼𝛼   →      𝐼
𝑑2𝜃

𝑑𝑡2
= −𝑘𝐿2 sin 𝜃 . 

Since sin 𝜃 ≈ 𝜃 for small oscillations, we have 

𝐼
𝑑2𝜃

𝑑𝑡2
+ 𝑘𝐿2𝜃 = 0   →     

𝑑2𝜃

𝑑𝑡2
+

3𝑘

𝑀 + 3𝑚
 𝜃 = 0   →     𝜔0 = √

3𝑘

𝑀 + 3𝑚
   →     𝑇 =

2𝜋

𝜔0
= 2𝜋√

𝑀 + 3𝑚

3𝑘
 . 

 

Alternate solution: The expression for the total energy of the vibrating system is 

𝐸 =
1

2
𝐼𝜔2 +

1

2
𝑘𝑥2 =

1

2
𝐼𝜔2 +

1

2
𝑘𝐿2 sin2 𝜃. 

Since energy is constant, we have 

𝑑𝐸

𝑑𝑡
= 𝐼𝜔

𝑑𝜔

𝑑𝑡
+ 𝑘𝐿2 sin 𝜃 cos 𝜃

𝑑𝜃

𝑑𝑡
= 0   →     𝐼

𝑑2𝜃

𝑑𝑡2
+ 𝑘𝐿2 sin 𝜃 cos 𝜃 = 0 . 

 

Using sin 𝜃 ≈ 𝜃 and cos 𝜃 ≈ 1 for small angles, we get the same equation. 

 

 

 


